Stability types of periodic orbits of multidimensional
Hamiltonian systems

Ch. Skokos'?
! Research Center for Astronomy, Academy of Athens, 14 Anagnostopoulou str.,
GR-10673, Athens, Greece
2Department of Physics University of Athens, Panepistimiopolis, GR-15784,
Zografos, Greece

Abstract

Using a suitable terminology for the different stability types of periodic orbits,
we classify all the direct transitions between different stability types in Hamilto-
nian systems with many degrees of freedom. We also provide an indicator of how
probable these transitions are.

1 Stability types of periodic orbits

Finding the periodic orbits of a dynamical system and their stability is a fundamen-
tal procedure in studying the behavior of the system. The stability or instability
of a periodic orbit defines the dynamical behavior of nearby orbits. In particular
non—periodic orbits near a stable periodic orbit have a time evolution similar to
the one exhibited by the periodic orbit, and so their behavior is said to be ordered,
while in the neighborhood of an unstable periodic orbit the system exhibit chaotic
behavior.

The periodic orbits and their stability have been extensively studied in the last
decades for autonomous Hamiltonian systems with 2 or 3 degrees of freedom (e.g.
Hénon 1965, Broucke 1969). Considerably less work has been done for systems
with more than three degrees of freedom (Howard & MacKay 1987, Howard &
Dullin 1998). In the present paper we present some resent results on the stability
of periodic orbits in multidimensional systems (Skokos 2001).

The linear stability or instability of a periodic orbit is defined by the eigenvalues
of the corresponding monodromy matrix (see for example Yakubovich & Starzhin-
skii 1975). This is a matrix whose columns are suitably chosen linearly independent
solutions of the so—called variational equations. These equations describe the time
evolution of a small deviation from the periodic orbit.

Let us consider a periodic orbit of a N + 1 degrees of freedom Hamiltonian
system and let L be its monodromy matrix. We note that this Hamiltonian system
corresponds to a 2N symplectic map in the sense that its Poincaré surface of section
is a 2N—-dimensional space. The eigenvalues of L are roots of the characteristic
polynomial P()), which is a palindrome of the form (Howard & MacKay 1987):
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The coefficients of P are functions of the elements of matrix L. P is written in a
simpler form in terms of the stability index
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In particular it becomes
Qb) = AgbN — ANV L+ (DN A b+ (—1)V A . (3)

The polynomial Q(b) is called the reduced characteristic polynomial. One of the
main advantages of introducing the stability indices b;, © = 1,2, ..., N is that they



solve a polynomial of half the original order, i.e. a polynomial equation of order
N. This turns the computational problem into a much more tractable one. The

coefficients A, i = 0,1,2,..., N of Q(b) are related to the roots b;, i = 1,2,..., N.

1)
In particular A} is the sum of all possible i-tuples of by, ..., b,.

The configuration of the eigenvalues of L on the complex plane, or equivalently
the values of the stability indices determine the stability type of a periodic orbit.
All the different cases are shown in Fig. 1. The orbit is stable (S) when b € (—2,2),
which means that A and 1/\ are complex conjugate numbers on the unit circle.
The orbit is unstable (U) when b € (—oc, —2) U (2, 00), which means that A and
1/ are real. We remark that the cases b > 2 and b < —2 are equivalent regarding
the stability character of the periodic orbit, but not completely identical since a
positive b cannot become negative under a continuous change of a parameter of
the system. The orbit is complex unstable (A) when b € C - R, which means that
we have four complex eigenvalues not laying on the unit circle, forming two pairs
of inverse numbers and two pairs of complex conjugate numbers.
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Figure 1. Configuration of the eigenvalues of matrix L on the complex plane, with respect to
the unit circle, for the stable (S), unstable (U) and complex unstable (A) cases. In every case b
is the corresponding stability index. We remark that A* denotes the complex conjugate of A.

The general stability type of a periodic orbit of a Hamiltonian system with N+1
degrees of freedom, or of a 2 N—dimensional symplectic map is

SnUn\ (4)

with n, m and [ integer numbers, denoting that 2n eigenvalues are on the unit circle,
2m eigenvalues are on the real axis and 4/ eigenvalues are on the complex plane
but not on the unit circle and the real axis. In order to distinguish between the
different arrangements of the eigenvalues on the real axis we can use the notation
SnUnmy my A1 With m = my 4+ my, denoting the case of having 2m; negative real
eigenvalues and 2ms positive real eigenvalues. The integers n, m, [ satisfy the
inequalities:

N
0§n§N,0§m§N,0§lsH, (5)
and the constraint
n+m+2=N. (6)
2 Direct transitions between different stability types

As already mentioned the stability of a periodic orbit is determined by the eigen-
values of the monodromy matrix L, which depend on the coefficients A;, j =
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Figure 2. Schematic representations of the configuration of the eigenvalues on the complex plane
for the basic transitions between different stability types, where one or two pairs of eigenvalues
are involved.

0,1,..., N — 1 of the characteristic polynomial P()). So, the stability type of a
periodic orbit is represented by a point A in the N-dimensional parameter space
S whose coordinates are the coefficients Ay, Aq,..., Ay_1. As a parameter of the
Hamiltonian system changes the coefficients of the characteristic polynomial also
change, causing possible changes in the stability type of the periodic orbit and the
motion of point A in S.

In Fig. 2 the basic transitions between different stability types are shown schemat-
ically. These transitions happen when certain constraints on the values of the sta-
bility indices, are valid. These constraints define a transition hypersurface in the
parameter space S, the crossing of which, by point A, corresponds to the change of
the stability type of the orbit. So, the transition S; — U; (Fig. 2(a)) happens when
b passes through b = 2, which corresponds to A crossing a (N — 1)—dimensional
hypersurface in S. In a similar way Sy — Ay (Fig. 2(b)) and Uy — A, (Fig. 2(c))
happen when point A crosses the (N — 1)-dimensional hypersurface produced by
by = by, while the transition S1U; — A; (Fig. 2(d)) happens when A crosses the
(N — 2)-dimensional hypersurface produced by b; = by = 2. The dimension D
of the hypersurface which corresponds to a certain transition is an indicator of
how probable this transition is, or in other words how specific the parameters that
influence the stability of an orbit must be in order for this transition to happen.

We consider now the problem of finding all the possible direct transitions be-
tween different stability types and the dimension D of the corresponding transition
hypersurface in S, without taking into account the different arrangements in the
U,, case. So, we find if and how a transition of the form

SnUmAl — Sn+5nUm+6mAl+5l ) (7)



where dn, dm, dl, are the changes in the multiplicity of S, U and A, can happen, in
the sense that there exist at least one configuration of the eigenvalues, compatible
with the U, and U, s, types, which allows this transition. Since both the initial
(SpUn4) and the final (Syy5nUmismOiia) stability types satisfy the constraint
(6) we conclude that dn, dm, dl satisfy

dn+dm+ 200 =0. (8)

So, the constraints (5), (6) and (8) define all the possible direct transitions of the
form (7) of a Hamiltonian system with N + 1 degrees of freedom.

Based on the simple transitions shown in Fig. 2 we find the constraints on
the stability indices that define the corresponding transition hypersurface in the
parameter space S for the general transition (7). When dn-dm < 0, the multiplicity
of S or U does not change or if both of them change the changes have different signs.
This transition introduces |§l| constraints of the form by = by and |6l + on| — ||
constraints of the form b = +2 (or —2). All these constraints are independent to
each other since they refer to different stability indices. So the dimension D of the
corresponding transition hypersurface is

D=N— |6l +6n| . 9)

When 6n - dm > 0, the multiplicity of both S and U increase (or decrease) leading
to decrement (or increment) of the multiplicity of A. This means that eigenvalues
come from (go to) the complex plane in quadruples. We have the following cases:
(a) If on and dm are even, the transition happens as seen in cases (b) and (c) of
Fig. 2. So [dl] constraints of the form b; = by are introduced and the dimension D
of the corresponding transition hypersurface is

D=N-|d. (10)

(b) If én and dm are odd then at least one transition of the form shown in Fig.
2(d) is needed. Thus we get |§l| —1 constraints of the form b; = by and 1 constraint
of the form b; = by = +2 (or —2). The dimension D of the transition hypersurface
is

D=N-|§l]-1. (11)
The dimension D of the transition hypersurface given by Eqgs. (9), (10) and (11) is
the maximal possible in the sense that any particular arrangement of the eigenval-
ues of U, and Uy, 4, which is compatible with the transition (7) is performed (if
it happens at all) by the crossing of a M—dimensional hypersurface with M < D.
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