
Stability types of periodi orbits of multidimensionalHamiltonian systemsCh. Skokos1;21Researh Center for Astronomy, Aademy of Athens, 14 Anagnostopoulou str.,GR-10673, Athens, Greee2Department of Physis University of Athens, Panepistimiopolis, GR-15784,Zografos, GreeeAbstratUsing a suitable terminology for the di�erent stability types of periodi orbits,we lassify all the diret transitions between di�erent stability types in Hamilto-nian systems with many degrees of freedom. We also provide an indiator of howprobable these transitions are.1 Stability types of periodi orbitsFinding the periodi orbits of a dynamial system and their stability is a fundamen-tal proedure in studying the behavior of the system. The stability or instabilityof a periodi orbit de�nes the dynamial behavior of nearby orbits. In partiularnon{periodi orbits near a stable periodi orbit have a time evolution similar tothe one exhibited by the periodi orbit, and so their behavior is said to be ordered,while in the neighborhood of an unstable periodi orbit the system exhibit haotibehavior.The periodi orbits and their stability have been extensively studied in the lastdeades for autonomous Hamiltonian systems with 2 or 3 degrees of freedom (e.g.H�enon 1965, Brouke 1969). Considerably less work has been done for systemswith more than three degrees of freedom (Howard & MaKay 1987, Howard &Dullin 1998). In the present paper we present some resent results on the stabilityof periodi orbits in multidimensional systems (Skokos 2001).The linear stability or instability of a periodi orbit is de�ned by the eigenvaluesof the orresponding monodromy matrix (see for example Yakubovih & Starzhin-skii 1975). This is a matrix whose olumns are suitably hosen linearly independentsolutions of the so{alled variational equations. These equations desribe the timeevolution of a small deviation from the periodi orbit.Let us onsider a periodi orbit of a N + 1 degrees of freedom Hamiltoniansystem and let L be its monodromy matrix. We note that this Hamiltonian systemorresponds to a 2N sympleti map in the sense that its Poinar�e surfae of setionis a 2N{dimensional spae. The eigenvalues of L are roots of the harateristipolynomial P (�), whih is a palindrome of the form (Howard & MaKay 1987):P (�) = �2N �AN�1�2N�1+AN�2�2N�2+ :::+(�1)NA0�N + :::�AN�1�+1 : (1)The oeÆients of P are funtions of the elements of matrix L. P is written in asimpler form in terms of the stability indexb = 1� + � : (2)In partiular it beomesQ(b) = A00bN � A01bN�1 + :::+ (�1)N�1A0N�1b + (�1)NA0N : (3)The polynomial Q(b) is alled the redued harateristi polynomial. One of themain advantages of introduing the stability indies bi, i = 1; 2; :::; N is that they



solve a polynomial of half the original order, i.e. a polynomial equation of orderN . This turns the omputational problem into a muh more tratable one. TheoeÆients A0i, i = 0; 1; 2; :::; N of Q(b) are related to the roots bi, i = 1; 2; :::; N .In partiular A0i is the sum of all possible i-tuples of b1, ..., bn.The on�guration of the eigenvalues of L on the omplex plane, or equivalentlythe values of the stability indies determine the stability type of a periodi orbit.All the di�erent ases are shown in Fig. 1. The orbit is stable (S) when b 2 (�2; 2),whih means that � and 1=� are omplex onjugate numbers on the unit irle.The orbit is unstable (U) when b 2 (�1;�2) [ (2;1), whih means that � and1=� are real. We remark that the ases b > 2 and b < �2 are equivalent regardingthe stability harater of the periodi orbit, but not ompletely idential sine apositive b annot beome negative under a ontinuous hange of a parameter ofthe system. The orbit is omplex unstable (�) when b 2 C - R, whih means thatwe have four omplex eigenvalues not laying on the unit irle, forming two pairsof inverse numbers and two pairs of omplex onjugate numbers.
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b > 2 b < -2Figure 1. Con�guration of the eigenvalues of matrix L on the omplex plane, with respet tothe unit irle, for the stable (S), unstable (U) and omplex unstable (�) ases. In every ase bis the orresponding stability index. We remark that �� denotes the omplex onjugate of �.The general stability type of a periodi orbit of a Hamiltonian system with N+1degrees of freedom, or of a 2N{dimensional sympleti map isSnUm�l (4)with n,m and l integer numbers, denoting that 2n eigenvalues are on the unit irle,2m eigenvalues are on the real axis and 4l eigenvalues are on the omplex planebut not on the unit irle and the real axis. In order to distinguish between thedi�erent arrangements of the eigenvalues on the real axis we an use the notationSnUm1;m2�l with m = m1 + m2, denoting the ase of having 2m1 negative realeigenvalues and 2m2 positive real eigenvalues. The integers n, m, l satisfy theinequalities: 0 � n � N ; 0 � m � N ; 0 � l � �N2 � ; (5)and the onstraint n+m + 2l = N : (6)2 Diret transitions between di�erent stability typesAs already mentioned the stability of a periodi orbit is determined by the eigen-values of the monodromy matrix L, whih depend on the oeÆients Aj, j =
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Figure 2. Shemati representations of the on�guration of the eigenvalues on the omplex planefor the basi transitions between di�erent stability types, where one or two pairs of eigenvaluesare involved.0; 1; :::; N � 1 of the harateristi polynomial P (�). So, the stability type of aperiodi orbit is represented by a point A in the N{dimensional parameter spaeS whose oordinates are the oeÆients A0; A1; : : : ; AN�1. As a parameter of theHamiltonian system hanges the oeÆients of the harateristi polynomial alsohange, ausing possible hanges in the stability type of the periodi orbit and themotion of point A in S.In Fig. 2 the basi transitions between di�erent stability types are shown shemat-ially. These transitions happen when ertain onstraints on the values of the sta-bility indies, are valid. These onstraints de�ne a transition hypersurfae in theparameter spae S, the rossing of whih, by point A, orresponds to the hange ofthe stability type of the orbit. So, the transition S1 ! U1 (Fig. 2(a)) happens whenb passes through b = 2, whih orresponds to A rossing a (N � 1){dimensionalhypersurfae in S. In a similar way S2 ! �1 (Fig. 2(b)) and U2 ! �1 (Fig. 2())happen when point A rosses the (N � 1){dimensional hypersurfae produed byb1 = b2, while the transition S1U1 ! �1 (Fig. 2(d)) happens when A rosses the(N � 2){dimensional hypersurfae produed by b1 = b2 = 2. The dimension Dof the hypersurfae whih orresponds to a ertain transition is an indiator ofhow probable this transition is, or in other words how spei� the parameters thatinuene the stability of an orbit must be in order for this transition to happen.We onsider now the problem of �nding all the possible diret transitions be-tween di�erent stability types and the dimension D of the orresponding transitionhypersurfae in S, without taking into aount the di�erent arrangements in theUm ase. So, we �nd if and how a transition of the formSnUm�l ! Sn+ÆnUm+Æm�l+Æl ; (7)



where Æn, Æm, Æl, are the hanges in the multipliity of S, U and �, an happen, inthe sense that there exist at least one on�guration of the eigenvalues, ompatiblewith the Um and Um+Æm types, whih allows this transition. Sine both the initial(SnUm�l) and the �nal (Sn+ÆnUm+Æm�l+Æl) stability types satisfy the onstraint(6) we onlude that Æn, Æm, Æl satisfyÆn+ Æm+ 2Æl = 0 : (8)So, the onstraints (5), (6) and (8) de�ne all the possible diret transitions of theform (7) of a Hamiltonian system with N + 1 degrees of freedom.Based on the simple transitions shown in Fig. 2 we �nd the onstraints onthe stability indies that de�ne the orresponding transition hypersurfae in theparameter spae S for the general transition (7). When Æn�Æm � 0, the multipliityof S or U does not hange or if both of them hange the hanges have di�erent signs.This transition introdues jÆlj onstraints of the form b1 = b2 and jÆl + Ænj � jÆljonstraints of the form b = +2 (or �2). All these onstraints are independent toeah other sine they refer to di�erent stability indies. So the dimension D of theorresponding transition hypersurfae isD = N � jÆl + Ænj : (9)When Æn � Æm > 0, the multipliity of both S and U inrease (or derease) leadingto derement (or inrement) of the multipliity of �. This means that eigenvaluesome from (go to) the omplex plane in quadruples. We have the following ases:(a) If Æn and Æm are even, the transition happens as seen in ases (b) and () ofFig. 2. So jÆlj onstraints of the form b1 = b2 are introdued and the dimension Dof the orresponding transition hypersurfae isD = N � jÆlj : (10)(b) If Æn and Æm are odd then at least one transition of the form shown in Fig.2(d) is needed. Thus we get jÆlj�1 onstraints of the form b1 = b2 and 1 onstraintof the form b1 = b2 = +2 (or �2). The dimension D of the transition hypersurfaeis D = N � jÆlj � 1 : (11)The dimension D of the transition hypersurfae given by Eqs. (9), (10) and (11) isthe maximal possible in the sense that any partiular arrangement of the eigenval-ues of Um and Um+Æm whih is ompatible with the transition (7) is performed (ifit happens at all) by the rossing of a M{dimensional hypersurfae with M � D.AknowledgmentsThis paper is dediated to the memory of C. Polymilis who suggested the subjet ofthe present paper, but unfortunately passed away before this work was ompleted.This work was supported by the European Union in the framework of E�ET IIand K�� 1994-1999, by the Researh Committee of the Aademy of Athens andby the Assoiation EURATOM{Helleni Republi under the ontrat ERB 5005CT 99 0100.ReferenesBrouke R. A., 1969, NASA Tehnial Report, 32, 1360H�enon M., 1965, Annal Astrophysique, 28, 992Howard J. E., Dullin H. R., 1998, Phys. Lett. A, 246, 273Howard J. E., MaKay R. S., 1987, J. Math. Phys., 28, 1036Skokos Ch., 2001, Physia D, 159, 155Yakubovih V. A., Starzhinskii V. M., 1975, Linear Di�erential Equations withPeriodi CoeÆients, J. Wisley, New York, Vol. 1


